Mechanisms Underlying Metabolic and Neural Defects in Zebrafish and Human Multiple Acyl-CoA Dehydrogenase Deficiency (MADD)
نویسندگان
چکیده
In humans, mutations in electron transfer flavoprotein (ETF) or electron transfer flavoprotein dehydrogenase (ETFDH) lead to MADD/glutaric aciduria type II, an autosomal recessively inherited disorder characterized by a broad spectrum of devastating neurological, systemic and metabolic symptoms. We show that a zebrafish mutant in ETFDH, xavier, and fibroblast cells from MADD patients demonstrate similar mitochondrial and metabolic abnormalities, including reduced oxidative phosphorylation, increased aerobic glycolysis, and upregulation of the PPARG-ERK pathway. This metabolic dysfunction is associated with aberrant neural proliferation in xav, in addition to other neural phenotypes and paralysis. Strikingly, a PPARG antagonist attenuates aberrant neural proliferation and alleviates paralysis in xav, while PPARG agonists increase neural proliferation in wild type embryos. These results show that mitochondrial dysfunction, leading to an increase in aerobic glycolysis, affects neurogenesis through the PPARG-ERK pathway, a potential target for therapeutic intervention.
منابع مشابه
Multi-organ Abnormalities and mTORC1 Activation in Zebrafish Model of Multiple Acyl-CoA Dehydrogenase Deficiency
Multiple Acyl-CoA Dehydrogenase Deficiency (MADD) is a severe mitochondrial disorder featuring multi-organ dysfunction. Mutations in either the ETFA, ETFB, and ETFDH genes can cause MADD but very little is known about disease specific mechanisms due to a paucity of animal models. We report a novel zebrafish mutant dark xavier (dxa(vu463) ) that has an inactivating mutation in the etfa gene. dxa...
متن کاملMolecular mechanisms of riboflavin responsiveness in patients with ETF-QO variations and multiple acyl-CoA dehydrogenation deficiency.
Riboflavin-responsive forms of multiple acyl-CoA dehydrogenation deficiency (RR-MADD) have been known for years, but with presumed defects in the formation of the flavin adenine dinucleotide (FAD) co-factor rather than genetic defects of electron transfer flavoprotein (ETF) or electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO). It was only recently established that a number of RR...
متن کاملProlonged exercise testing in two children with a mild Multiple Acyl-CoA-Dehydrogenase deficiency
BACKGROUND: Multiple Acyl-CoA-Dehydrogenase deficiency (MADD) is an inherited metabolic disorder characterized by impaired oxidation of fatty acids and some amino acids. METHODS: We were interested whether children with MADD could tolerate a prolonged low-intensity exercise test and if this test could have any additional diagnostic value. Therefore, we performed a maximal exercise test and a lo...
متن کاملETFDH mutations as a major cause of riboflavin-responsive multiple acyl-CoA dehydrogenation deficiency.
Multiple acyl-CoA dehydrogenation deficiency (MADD) is a disorder of fatty acid, amino acid and choline metabolism that can result from defects in two flavoproteins, electron transfer flavoprotein (ETF) or ETF: ubiquinone oxidoreductase (ETF:QO). Some patients respond to pharmacological doses of riboflavin. It is unknown whether these patients have defects in the flavoproteins themselves or def...
متن کاملBent spine syndrome as an initial manifestation of late-onset multiple acyl-CoA dehydrogenase deficiency: a case report and literature review
BACKGROUND Late-onset multiple acyl-CoA dehydrogenase deficiency (MADD) is an autosomal recessive inherited disease of metabolic dysfunction clinically characterized by fluctuating proximal muscle weakness, excise intolerance, and dramatic riboflavin responsiveness. Dropped head syndrome can occasionally be observed in some severe patients with late-onset MADD; however, bent spine syndrome as a...
متن کامل